If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=4(10x+3)
We move all terms to the left:
15x^2-(4(10x+3))=0
We calculate terms in parentheses: -(4(10x+3)), so:We get rid of parentheses
4(10x+3)
We multiply parentheses
40x+12
Back to the equation:
-(40x+12)
15x^2-40x-12=0
a = 15; b = -40; c = -12;
Δ = b2-4ac
Δ = -402-4·15·(-12)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{145}}{2*15}=\frac{40-4\sqrt{145}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{145}}{2*15}=\frac{40+4\sqrt{145}}{30} $
| -0.3+0.8x=-0.5 | | 12+2x=14x | | |7x+24|=x | | (3t+5)-(4t+8)(7t-3)=4 | | 35x^2+24x+18=0 | | 1/4c-5=100 | | (2x+65)=(6x+25) | | X+y=180° | | 2(x+x+4)=84 | | Y=3x2^x+1-12 | | X2+100x+1200=0 | | X2-100x+1200=0 | | 2x×6x=11 | | p/3+1/2(p+1)=5 | | X/2+x+1/4=4 | | (-33-2)+(2*5)=x | | (-33-2)+2*5=x | | 2+(5+5)-x=45 | | x+20*(2+2)=85 | | x+20+(2+2)=85 | | M=3s+4 | | M=3s+3 | | M=3s+2 | | x-20+20=5 | | 2+10-x=45 | | (5*x-6)^2-1=15 | | 19/80=95/b | | (5x)^x=5^5^5 | | 3/1=6.6/x | | X^+18x+16=0 | | ‐10x‐3x=‐13x | | 29/18-1/2x=-5/3(x+1/3) |